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We study non-Gaussian probability density functions �PDF’s� of multiplicative log-normal models in which
the multiplication of Gaussian and log-normally distributed random variables is considered. To describe the
PDF of the velocity difference between two points in fully developed turbulent flows, the non-Gaussian PDF
model was originally introduced by Castaing et al. �Physica D 46, 177 �1990��. In practical applications, an
experimental PDF is approximated with Castaing’s model by tuning a single non-Gaussian parameter, which
corresponds to the logarithmic variance of the log-normally distributed variable in the model. In this paper, we
propose an estimator of the non-Gaussian parameter based on the qth order absolute moments. To test the
estimator, we introduce two types of stochastic processes within the framework of the multiplicative log-
normal model. One is a sequence of independent and identically distributed random variables. The other is a
log-normal cascade-type multiplicative process. By analyzing the numerically generated time series, we dem-
onstrate that the estimator can reliably determine the theoretical value of the non-Gaussian parameter. Scale
dependence of the non-Gaussian parameter in multiplicative log-normal models is also studied, both analyti-
cally and numerically. As an application of the estimator, we demonstrate that non-Gaussian PDF’s observed in
the S&P500 index fluctuations are well described by the multiplicative log-normal model.
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I. INTRODUCTION

To describe the probability density function �PDF� of the
velocity difference between two points in fully developed
turbulent flows, Castaing et al. �1� introduced the following
equation based on a log-normal cascade model �paradigm�:

P�,�0
�x� = �

0

� 1
�2��

exp�−
ln2��/�0�

2�2 �
�

1
�2��

exp�−
x2

2�2�d�ln �� , �1�

where � and �0 are positive parameters. By taking the limit
�→0 in Eq. �1�, a Gaussian distribution is obtained. On the
other hand, the larger value of � results in fatter non-
Gaussian tails of the PDF �Fig. 2�a��. The other parameter �0
only affects the standard deviation of P�,�0

�x�. If �0=1 and
��0, the variance of P�,1�x� is greater than one. Therefore,
to describe a standardized PDF with zero mean and unit vari-
ance, we have to adjust the value of �0 in Eq. �1�.

It is important to note that the PDF described by Eq. �1�
does not always imply the existence of a cascade process
such as that used in modeling turbulence. If a stochastic pro-
cess 	xi
 can be described as

xi = �ie
	i, �2�

where � is a Gaussian variable with zero mean and 	 is also
a Gaussian independent of �, the PDF of 	xi
 has the same
functional form as Eq. �1�. In this case, it is possible to
assume that 	�i
 and 		i
 are both uncorrelated random vari-
ables, although the long range correlation of the 	i plays an
important role in generating intermittency �2,3�. In this pa-
per, we refer to a stochastic process exhibiting the non-

Gaussian PDF described by Eq. �1� as a multiplicative log-
normal model in a broad sense.

Although Castaing’s equation �Eq. �1�� was originally in-
troduced to study fully developed turbulence �1,4�, it has
been demonstrated that this equation provides a good ap-
proximation of non-Gaussian PDF’s observed not only in
hydrodynamic turbulence, but also in diverse fields such as
solar wind �5�, foreign exchange rate �6�, stock index �7�,
and human heartbeat �8,9� fluctuations. Hence, its increas-
ingly widespread application is foreseen.

In practical applications of Eq. �1�, the non-Gaussian pa-
rameter � has been estimated from a fitting algorithm to
minimize the 
2 statistic between the observed and numeri-
cally integrated PDF’s. In this approach, it is very difficult to
estimate the small value of � ��0.1�, because multiplications
of extremely large and almost zero values are computed in
the numerical integration of Eq. �1�. In this case, the accu-
racy of the estimation strongly depends on the algorithm of
the numerical integration. In addition, we have to repeat the
numerical integration until the 
2 statistic reaches the mini-
mum value, which makes the computation time very long. To
avoid such problems of the fitting procedure, we here pro-
pose an estimator of � based on qth order absolute moments.

II. RELATION BETWEEN THE NON-GAUSSIAN
PARAMETER �2 AND qTH ORDER

ABSOLUTE MOMENTS

We can calculate the standard deviation �1 of P�,�0
�x�

�Eq. �1�� with �0=1 as

�1 = exp��2� .

Thus, the standardized PDF of P�,�0
�x� �Eq. �1�� is given by
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which depends only on a single parameter �. In this case, the
relation between �0 and � is given by

�0 = exp�− �2� .

Using Eq. �3�, we can calculate the qth order absolute
moments

��x�q = �
−�

�

�x�qf��x�dx =

2q/2��q + 1

2
�

��
exp�q�q − 2��2

2
� ,

�4�

where the angular brackets mean the statistical average, and
� is the gamma function and q�−1. From Eq. �4�, we obtain

the estimator �̂q
2 of the non-Gaussian parameter �2 as

�̂q
2 =

2

q�q − 2�
�ln�����x�q

2q/2 � − ln ��q + 1

2
�� , �5�

where q�0,2. In practical time series analysis, the ��x�q is
estimated from a time series 	xi
 with zero mean and unit
variance.

III. ILLUSTRATIVE EXAMPLES OF MULTIPLICATIVE
LOG-NORMAL MODELS

To test the estimator �̂q
2 �Eq. �5��, we introduce stochastic

processes within the framework of Eq. �2�. By analyzing the
numerically generated data set of the stochastic processes,

we demonstrate that the estimator �̂q
2 �Eq. �5�� can reliably

determine the theoretical value of the non-Gaussian param-
eter.

A. Independent and identically distributed
non-Gaussian variables

A stochastic process 	xi
 �i=1,2 ,3 , . . . � exhibiting the
non-Gaussian PDF of f��x� �Eq. �3�� is described by

xi = �ie
�	i−�2

, �6�

where 	�i
 and 		i
 are both sequences of Gaussian white
noise with zero mean and unit variance, and independent of
each other; and � is the non-Gaussian parameter in Eq. �3�.
Equation �6� is derived by the standardization of Eq. �2�.
Note that the xi is a Gaussian variable when �=0. Similarly,
Eq. �3� converges to a Gaussian in the limit �→0.

Example time series are shown in Fig. 1. As the non-
Gaussian parameter � increases, the occurrence of large de-
viations from the average value becomes more pronounced,
and the tails of the corresponding PDF become increasingly
stretched �Fig. 2�.

To test the estimator �̂q
2 �Eq. �5��, we generate non-

Gaussian data sets using Eq. �6�, and then compute the value

of the estimator �̂q
2. Figure 3 shows the results of the estima-

tion averaged over 200 samples. In this case, a constant

value of �̂q
2 independent of q is expected from Eq. �5�. If the

data length n is sufficiently long �Figs. 3�a� and 3�b��, the

estimator �̂q
2 provides a good estimation until higher order q.

Figure 3�c� demonstrates that the �̂q
2 in the range 0�q�1

still provides a good estimation when the data length n
�104.

To obtain the optimal estimation of the non-Gaussian pa-

rameter �2, we have to choose the order q of �̂q
2. To do this,

we study numerically the error and asymptotic properties of

the estimator �̂q
2. In statistics, to judge the quality of an esti-

FIG. 1. Time series of independent and identically distributed
non-Gaussian variables with zero mean and unit variance �Eq. �6��.
�a� �=0.2. �b� �=0.4. �c� �=0.6. �d� �=0.8.

FIG. 2. Probability density functions �PDF’s� of Eq. �3� with the
non-Gaussian parameters �=0.2, �=0.4, �=0.6, �=0.8 �from bot-
tom to top�. Solid lines: numerical integration of Eq. �3�. Symbols:
estimated PDF’s from the time series shown in Fig. 1. The PDF’s
are shifted in vertical directions for convenience of presentation;
thus the vertical axis is given in arbitrary units.
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mator, the mean squared error �MSE� has generally been

used. For the estimator �̂q
2 of the parameter �2, the MSE of

�̂q
2 is defined as

��̂q
2� = ���̂q

2 − �2�2 , �7�

where the angular brackets stand for the ensemble average.
The numerically estimated MSE are shown as the square

root of ��̂q
2� in Fig. 4�a�. As shown in Fig. 4�a�, the optimal

order q to provide minimum MSE depends on the value of
the parameter �2. Numerical results show that an optimal
value of q can be found in the range 0�q�1 when 0.1
��2�0.4, and in the range −0.3�q�0 when 0.4��2

�0.8. In practical applications, for the purpose of guarantee-
ing numerical stability �and in order to avoid division by
zero in computer arithmetic�, it is better to use a positive
value of q. The actual value of �2 observed experimentally is
also unknown a priori, leaving one to guess the optimal q to

be used. Therefore, we propose to use �̂q=0.5
2 as a nearly

optimal estimator for �2�0.8. In addition, our numerical

study suggests that the �̂0.5
2 for �2�0.8 is a consistent esti-

mator. As we can see in Fig. 4�b�, the MSE of �̂0.5
2 is approxi-

mately proportional to n−1. Extrapolation of this dependence

to n→� implies statistical consistency: plimn→� �̂q
2=�2.

Based on the above facts, we use the estimator �̂0.5
2 in the

following.

B. Log-normal cascade-type multiplicative process

For the next example, we study a log-normal cascade-type
multiplicative process inspired by the intermittency problem
of hydrodynamic turbulence �10�. Although there are several
ways to simulate intermittency properties of a turbulent ve-
locity field �3,11–14�, we here remain within the framework
of a multiplicative log-normal model �Eq. �2��. The impor-
tant property of our model is that its PDF is described ex-
actly by Eq. �1�, and shows the deformation predicted by the
log-normal model of Kolmogorov �15� and Obukhov �16�.

The numerical procedure to generate a time series of our
model is as follows. First we generate a time series 	�i
 of
Gaussian white noise with zero mean, as illustrated in Fig.
5�a�. In this case, the total number of data points is 2m �i
=1, . . . ,2m�, where m is the total number of cascade steps. In
the first cascade step �j=1�, we divide the whole interval into
two equal subintervals, and then multiply �i in each subinter-
val by random weights exp�	�1��k���k=0,1� �Fig. 5�b��. In
our model, 	�j��k� are independent Gaussian random vari-
ables with zero mean and constant variance, �	�j��k�2=�0

2. In
the next cascade step �j=2�, we further divide each subinter-
val into two equal subintervals, and apply the random
weights exp�	�2��k�� �k=0,1 ,2 ,3� �Fig. 5�c��. The same pro-
cedure is repeated, and after m cascade steps, the time series
	xi
 of the cascade process is given by

xi = �i exp��
j=1

m

	�j��� i − 1

2m−j ��� , �8�

where �·� is the floor function. Note that in order to simplify
the notation, the random variable xi is not standardized.

The sum of the Gaussian variables 	�j��k� in Eq. �8� is
also a Gaussian variable. Thus, the time series 	xi
 can be
described by the same form of Eq. �2�, with the PDF given
by Eq. �1� with �2=m�0

2. As we can see in Figs. 5�b�–5�d�,
heterogeneity of local variance generated by the cascade
steps results in a non-Gaussian PDF. The variance heteroge-

FIG. 3. The sample mean of the estimator �̂q
2, where the observed time series 	xi
 is standardized before computing �̂q

2. The sample mean
was estimated from 200 samples. The theoretical values of �2 are shown in panel �a�. The error bars indicate the sample standard deviation.
�a� Data length n=106; �b� n=105; �c� n=104; and �d� n=103.

FIG. 4. �Color online� �a� Dependence of mean squared error

��̂q
2� on the order q, where the data length n=104, and q�0,2. �b�

Asymptotic properties of ��̂0.5
2 �, where n is the data length. The

��̂q
2� are numerically obtained from 1024 samples. The values of

the parameter �2 are shown in each panel.
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neity is an important difference from an independent and
identically distributed �IID� random sequence, as shown in
Fig. 1.

In the investigation of the intermittency of turbulence, the
scale dependence of the PDF has been studied with great
interest �1,4,5�. As pointed out by Castaing et al. �1�, the
original Kolmogorov-Obukhov theory �15,16� predicts that
the non-Gaussian parameter �2 in the inertial range is pro-
portional to −ln s, where s is the spatial scale. This feature is
simulated by our model. In our case, the logarithmic depen-
dence of �2 is observed as the slow convergence to Gaussian
behavior with an increasing coarse-grained level of the time
series.

To demonstrate that our estimator �̂q
2 �Eq. �5�� can also

quantify the scale dependence of the non-Gaussian PDF with
an increasing coarse-grained level of time series, we consider
integrated time series 	Zn
 of a time series 	xi
, where

Zn = x1 + x2 + ¯ + xn.

We study the deformation process of the PDF of the differ-
ence �sZi=Zi+s−Zi, which mimics the velocity difference in
turbulence statistics. If the time series 	xi
 is the IID se-
quence introduced in the previous subsection, the PDF of
�sZi �the sum of xi� rapidly converges to a Gaussian as the
scale s increases, as shown in Fig. 6�b�. This example �or the
Berry-Esséen theorem �17�� provides a benchmark for the
speed of convergence to a Gaussian. Compared to the IID
sequence, the time series of the cascade model shows ex-
tremely slow convergence to a Gaussian, as shown in Fig.
6�a�. In addition, as we can see in Fig. 7�b�, the scale depen-
dence of the non-Gaussian parameter �2 clearly displays the
difference between processes different in terms of their con-
vergence to the Gaussian.

FIG. 5. �Color online� Illustration of data gen-
eration procedures of the multiplicative cascade
process, where the total number of cascade steps
is m=10 and �	�j��k�2=0.82 /10. �a� Time series
	�i
 of Gaussian white noise with zero mean and
unit variance; �b� first cascade step; �c� second
cascade step; �d� third cascade step; and �e� gen-
erated time series after 10 cascade steps ��2

=0.82�. The gray shading indicates the standard
deviation in each subinterval. In this illustration,
the variance of the time series is set to unity.
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For the cascade model, if we approximate the local distri-
bution of the sum of 	xi
 by a Gaussian, the PDF of �sZi can
be described by Eq. �3�. Note that in an intermediate cascade
step �Figs. 5�b�–5�d��, the distribution of xi in each subinter-
val is a Gaussian. Therefore, a local distribution of 	xi
 is
nearly Gaussian, while the convolution of the distributions
becomes more Gaussian. Using the Gaussian approximation,
the scale dependence of the non-Gaussian parameter �2 can
be evaluated as

�2�s� � �0
2�m − log2 s� � − ln s . �9�

As we can see in Fig. 7, Eq. �9� provides good predictions. In

other words, the estimator �̂0.5
2 can properly characterize the

intermittency properties.

As shown in Fig. 6�b�, our numerical results demonstrate
that for the IID sequence, the deformation of the PDF’s of
�sZi is also well approximated by Eq. �3�. Note that the PDF
of �sZi �s�1� of the IID sequence is not exactly the same as
Eq. �3�, although the PDF of xi �=�1Zi−1� is given by Eq. �3�
�see also the Appendix�. As seen in Fig. 7 �filled triangles�,
the speed of convergence to a Gaussian is much faster than
that of cascade processes.

IV. APPLICATION TO FINANCIAL TIME SERIES

Since Ghashghaie et al. �6� demonstrated that the PDF’s
of foreign exchange price changes at different time scales
can be described in the same way as Castaing et al. �1�
described the PDF’s of velocity variations at different space
separations in fully developed turbulence by Eq. �1�, the

FIG. 6. �Color online� Deformation of PDF’s across scales. Standardized PDF’s �in logarithmic scale� of �sZ for different scales are
shown for �from top to bottom� s=1,4 ,16,64,256,1024. These PDF’s are estimated from 256 samples. �a� Log-normal cascade process with
�2=0.82 and m=16. �b� An IID sequence �n=105� of Eq. �6� with �2=0.82. The PDF’s of �1Z in �a� and �b� have the same shape. In the solid

line, we superimposed the PDF approximated by Eq. �3� with the estimated value of �̂0.5
2 . For comparison, the dashed line denotes a Gaussian

distribution.

FIG. 7. �Color online� Scale dependence of the non-Gaussian parameter estimated by �̂0.5
2 . �a� Log-normal cascade process with �2

=0.82 and m=16 �circles� and with �2=0.62 and m=16 �triangles�. �b� Log-normal cascade process with �2=0.82 and m=16 �circles� and
with �2=0.82 and m=12 �squares�; IID random variables of Eq. �6� with �2=0.82 �filled triangles�. The sample means of the non-Gaussian
parameter estimated from 4096 samples are plotted. The error bars indicate the sample standard deviation. The solid lines indicate the
theoretical prediction.
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analogy between turbulence and finance has been studied by
some physicists �18–21�. Recently, we also demonstrated
that the PDF’s of fluctuations of the U.S. S&P500 stock in-
dex are well approximated by Eq. �1� �7�. In addition, we
revealed the empirical fact that the temporal dependence of
the PDF shows a gradual, systematic increase in the non-
Gaussian parameter �2 on approaching the Black Monday
crash of October 1987. Because the marked fat tails charac-
terized by the large value of �2 imply a high probability of a
large price change, the quantitative characterization of the
non-Gaussian behavior is potentially of great importance for
risk analysis in the financial markets.

In this section, we demonstrate that our estimator �̂q
2 �Eq.

�5�� is applicable to the non-Gaussian behavior of the finan-
cial time series. As an example, we analyze the U.S. S&P500
historical data for the three-year period, from January 2,
1992 to December 30, 1994, with a sampling frequency of
2 min intervals. The total number of data points is 1.48
�105. We define the S&P500 index fluctuations 	�sz�t�
 as
the log return, �sz�t�=ln y�t+s�−ln y�t�, where y�t� denotes
the S&P500 index at time t, and estimate the non-Gaussian
parameter �2 of the log returns on different time scales s.

Figure 8�a� shows the �̂q
2 vs q for different time scales.

The nearly constant values of �̂q
2 independent of q indicate

that the standardized PDF of the log return can be well de-
scribed by a multiplicative log-normal model �Eq. �3�� with a
single non-Gaussian parameter �2. As shown in Fig. 8�b�, we
can see the good fit of the PDF of the multiplicative log-
normal model �Eq. �3�� to the actual data.

The scale dependence of the �̂0.5
2 is shown in Fig. 8�c� by

filled circles. Compared to the numerical examples shown in
Fig. 7�b�, we can see the slow convergence to a Gaussian
similar to the cascade models. This fact implies the existence
of heterogeneity of local variance. In the field of financial
time series analysis, quantification of the variance heteroge-
neity has been an important issue �22�. Our approach, in-
spired by turbulence statistics, may serve as a good charac-
terization of the financial time series for this purpose.

To date, the non-Gaussian parameter �2 has been esti-
mated from a fitting algorithm to minimize the 
2 statistic

between the experimental and numerically integrated PDF’s.
In this method, the construction of the experimental PDF has
been based on a nonparametric probability density estima-
tion, such as a conventional histogram estimator. It is impor-
tant to note that the global consistency of the histogram es-
timator can be guaranteed only if, as the number of data
points n goes to infinity, the histogram bin width h goes to
zero, while ensuring nh→� �23�. Therefore, the point esti-
mation of the �2 using the histogram estimator with a finite
bin width is always biased, depending on the number of data
points n, the bin width h, and the shape of the true density
function. For instance, the scale dependence of �2 estimated
from the histogram estimator with the different bin width h is
shown in Fig. 8�c�, which demonstrates that the estimated
value of the �2 strongly depends on the bin width h, espe-
cially for the large value of �2. Hence the arbitrary choice of
the bin width h makes the quantitative estimation of �2 un-

reliable. On the other hand, our estimator �̂q
2 �Eq. �5�� is

straightforward and without such arbitrariness.

V. SUMMARY AND DISCUSSION

In this paper, we derive the equations of a standardized
PDF �Eq. �3�� and its qth order absolute moments �Eq. �4�� of
multiplicative log-normal models �Eq. �2��. Using the rela-
tion between a qth order absolute moment and the non-
Gaussian parameter of a multiplicative log-normal model, an
estimator �Eq. �5�� of the non-Gaussian parameter is intro-
duced. By applying the estimator to a time series of multi-
plicative log-normal models with IID and cascade processes,
it is demonstrated that the estimator can reliably determine
the theoretical value of the non-Gaussian parameter. In addi-
tion, we demonstrate that non-Gaussian PDF’s observed in
the S&P500 index fluctuations are well described by the
multiplicative log-normal model �Eq. �3��.

In the study of fully developed turbulence, one of the
main tools to characterize the intermittency has been the
multiscaling analysis of velocity structure functions. More-
over, the multiscaling technique has been applied to other

FIG. 8. �Color online� Estimation of the non-Gaussian parameter �2 for log-return fluctuations �sz of the S&P500 index data from

Jan. 2, 1992 to Dec. 30, 1994. �a� �̂q
2 vs q for different time scales are shown for �from top to bottom� s=10, 20, 60, 240, and 1000 min. The

dashed horizontal lines show the values of the �̂0.5
2 . �b� Standardized PDF’s �in logarithmic scale� of �sz for different time scales are shown

for �from top to bottom� s � 10, 20, 60, 240, and 1000 min, where �s is the standard deviation of �sz. In solid lines, we superimpose the

numerically integrated PDF’s of Eq. �3� with �̂0.5
2 . The PDF’s are shifted in vertical directions for convenience of presentation; thus the

vertical axis is given in arbitrary units. �c� Scale dependence of the non-Gaussian parameter �2 estimated from �̂0.5
2 �filled circles� and from

a fitting algorithm based on the histogram estimator with a different bin width h. The values of the h are shown in the panel.
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systems �24–26�. In our notations, the scaling of the structure
functions Sq�s� of time series 	xi
 is described as

Sq�s� = ��Zi+s − Zi�q = ���sZi�q � s�q, �10�

where Zi=� j=1
i xi. Within the framework of the multiplicative

log-normal model, the relation between the ���sZi�q and the
non-Gaussian parameter of �sZi is given by Eq. �4�. Thus,
scaling exponents �q �q�2� are fully determined by the scale
dependence of the non-Gaussian parameter �2 and a scaling
exponent �2. For instance, using the scale dependence of �2

�Eq. �9�� of the cascade model �Eq. �8�� we can obtain the
following �q spectrum:

�q =
q

2
−

q�q − 2�
2

�0
2. �11�

In this case, logarithmic decay of the scale dependence of �2,
�2�s��−ln s, is essential for the existence of the scaling
range because of exp��2� in Eq. �4�. Therefore, for other
types of scale dependence in multiplicative log-normal mod-
els, the multiscaling analysis based on Eq. �10� cannot pro-
vide valid characterizations.

Although in our examples of the multiplicative log-
normal model we assume that 	�i
 is a sequence of Gaussian
white noise, generalization to fractional Gaussian noise is
possible. Further study on generalizations of multiplicative
log-normal models will be reported elsewhere.

ACKNOWLEDGMENTS

The author �K.K.� would like to thank Professor Naoaki
Bekki for stimulating discussions. This work was partly sup-
ported by a Research Grant of the College of Engineering,
Nihon University for 2007.

APPENDIX: SUM OF TWO IID VARIABLES
IN A MULTIPLICATIVE LOG-NORMAL MODEL

In this Appendix, we study the PDF of the sum of two IID
variables in a multiplicative log-normal model. Let
	x1 ,x2 ,x3 , . . . 
 be a sequence of IID variables described by

xi = �ie
	i, �A1�

where 	�i
 and 		i
 are both sequences of Gaussian white
noise with ��= �	=0, ��2=1, and �	2=�2. Under these
assumptions, the PDF of xi is given by

P��x� = �
0

� 1
�2��

exp�−
ln2 �

2�2 � 1
�2��

exp�−
x2

2�2�d�ln �� .

�A2�

To simplify the expression, we assume this PDF with the
non-Gaussian parameter � instead of the standardized PDF
�Eq. �3��. In this case, the PDF of the sum xi+1+xi+2=�2Zi is
given by the convolution of P��x� as follows:

P��2Z� = �
−�

�

P���2Z − x�P��x�dx = �
0

� 1
�2���/�2�

exp�−
�ln ��2

2��/�2�2�R��ln ��
1

�2��
exp�−

��2Z�2

2�2 �d�ln �� , �A3�

where

R��ln �� = �
0

�/2 1

2���
exp�−

2 ln �	ln�sin � cos ��
 + ln2�sin �� + ln2�cos ��
2�2 � d�

sin � cos �
. �A4�

FIG. 9. �Color online� ��a� and �b�� Comparison between a log-
normal kernel with �2=0.82 /2 �dashed line� and the convoluted
kernel G��� �Eq. �A4�� with �2=0.82 �solid line�, where �max gives
the maximum value of each function. ��c� and �d�� Comparison
between Eq. �A4� with �2=0.82 �solid line� and the approximation
using a log-normal kernel �dashed line�, where both distributions
have the same logarithmic variance.

ESTIMATOR OF A NON-GAUSSIAN PARAMETER IN … PHYSICAL REVIEW E 76, 041113 �2007�

041113-7



If the R��ln �� is equal to one, Eq. �A3� can be described by
the same form as Eq. �A2� with the non-Gaussian parameter
� /�2. In this case, the scale dependence of �2 would be
proportional to s−1. However, the fact is that this assumption
provides a rough approximation.

To illustrate the effect of R��ln ��, we numerically evalu-
ate the kernel in Eq. �A3� as follows:

G��� =
1

�2���/�2�
exp�−

�ln ��2

2��/�2�2�R��ln �� . �A5�

As shown in Figs. 9�a� and 9�b�, the log-normal kernel is
deformed to a slightly wider distribution by R��ln ��. Nev-
ertheless, the multiplication of the log-normal kernel and
R��ln �� is well approximated by a log-normal kernel with a
larger parameter � �Figs. 9�c� and 9�d��. In addition, the dif-
ference between the log-normal kernels with and without
R��ln �� gradually decreases through the convergence to a
Gaussian.

In conclusion, the above analysis demonstrates that the
PDF of the sum of IID variables in a multiplicative log-
normal model is well approximated �but not exactly de-
scribed� by Eq. �1�.
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